Tessellations of Solvmanifolds
نویسنده
چکیده
Let A be a closed subgroup of a connected, solvable Lie group G, such that the homogeneous space A\G is simply connected. As a special case of a theorem of C. T. C. Wall, it is known that every tessellation A\G/Γ of A\G is finitely covered by a compact homogeneous space G′/Γ′. We prove that the covering map can be taken to be very well behaved — a “crossed” affine map. This establishes a connection between the geometry of the tessellation and the geometry of the homogeneous space. In particular, we see that every geometrically-defined flow on A\G/Γ that has a dense orbit is covered by a natural flow on G′/Γ′.
منابع مشابه
Parabolic Subgroups of Semisimple Lie Groups and Einstein Solvmanifolds
In this paper, we study the solvmanifolds constructed from any parabolic subalgebras of any semisimple Lie algebras. These solvmanifolds are naturally homogeneous submanifolds of symmetric spaces of noncompact type. We show that the Ricci curvatures of our solvmanifolds coincide with the restrictions of the Ricci curvatures of the ambient symmetric spaces. Consequently, all of our solvmanifolds...
متن کاملHigher rank Einstein solvmanifolds
In this paper we study the structure of standard Einstein solvmanifolds of arbitrary rank. Also the validity of a variational method for finding standard Einstein solvmanifolds is proved.
متن کاملNew examples of non-symmetric Einstein solvmanifolds of negative Ricci curvature
We obtain new examples of non-symmetric Einstein solvmanifolds by combining two techniques. In Tamaru (Parabolic subgroups of semisimple Lie groups and einstein solvmanifolds. Math Ann 351(1):51–66, 2011) constructs new attached solvmanifolds, which are submanifolds of the solvmanifolds correspond to noncompact symmetric spaces, endowed with a natural metric. Extending this construction, we app...
متن کاملWiener, Szeged and vertex PI indices of regular tessellations
A lot of research and various techniques have been devoted for finding the topological descriptor Wiener index, but most of them deal with only particular cases. There exist three regular plane tessellations, composed of the same kind of regular polygons namely triangular, square, and hexagonal. Using edge congestion-sum problem, we devise a method to compute the Wiener index and demonstrate th...
متن کاملComplex and Kähler Structures on Compact Solvmanifolds
We discuss our recent results on the existence and classification problem of complex and Kähler structures on compact solvmanifolds. In particular, we determine in this paper all the complex surfaces which are diffeomorphic to compact solvmanifolds (and compact homogeneous manifolds in general).
متن کامل